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Summary

The paper presents the influence of variable selection in location
model to the results of identification. The selection of variables is
performed by the Akaike information criterion using the modified method of
Daudin (1986). It is compared with the procedure of Krzanowski (1983). For
some medical data it appeared that the identification results after the
model choice may be better than for the complete set of predictor
variables. Thus the variable selection should be recommended before
discrimination.

1. INTRODUCTION

The discrimination problem, i.e., the problem of identifying the
individual described by the observational vector of predictor variables
and assigning it to one of several populations considered on the basis of
the observed values of these variables is common in many practical
applications. The predictor variables are often of both a continuous and a
discrete character. Besides nonparametric methods and logistic
discrimination the location model approach has been developed to solve the
problem. Introduced by Krzanowski (1975) to the dichotomous discrimination
with both continuous and binary variables it assumes the multivariate
normal distribution for continuous variables with the common covariance
matrix but the means different for all groups and cells of the contingency
table defined by binary variables values. The generalizations of the
method to mixtures of continuous and discrete variables with more than two
states (by transformation to the series of binary variables) and to the
polychotomous problem are possible (Krzanowski (1980), (1986), Krusinska
(1988)). The appropriate model choice is an important problem in
mixed-variables discrimination. The procedure of Krzanowski (1983) enables
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to choose the discrete variables to the model. The procedure of Daudin
(1986) is more general one. These methods are compared in the paper basing
on the example of medical data.

2. LOCATION MODEL

The model introduced by Krzanowski (1975) to the dichotomous problem
(g=2) assumes that each individual drawn out of popuiation "y 2 is
described by the vector x of q binary variables and the vector y of p
continuous ones. Binary variables define the contingency table of k=29
cells. The multivariate normal distribution N (uil),!) with the
mean vectors ni-) (i=1,2; m=1,2,...,k) different in each cell and group
and the common covariance matrix E is assumed for continuous variables.
The problem is in classifying the individual (x, y) falling into the mth
cell to ®, or m,. The optimal classification rule is: classify y to =
: ¢ g

or =

1

W™ w2y - 3 ™ wl®)) 2 tes(e,, /e, (1)

and otherwise to ", (where pl-.pz- are the cell probabilities).Thus it is
equivalent to the linear Fisherian discrimination but performed separately
for each cell of the contingency table defined by binary variables values.
Therefore it is easily generalized to the polychotomous case (g>2)
(Krusinska (1988)).

Because the parameters of the model are not known in practice they
should be estimated from the data. The cell probabilities Pim
(i=1,2,...,8; m=1,2,...,k) are estimated after assuming the log-linear
model by the iterative scaling algorithm of Haberman (1972) which allows

for empty cells in the contingency table. For the parameters related to

continuous variables, i.e. ng-) the linear additive model is assumed to
obtain the smoothed estimates:

M o= v+ § o x4 § E pjk,i XK bt 61._'q'ix1-x2-...-x 5 (2)

The conditional mean vector pi-) is obtained by inserting the values of
binary variables corresponding to the mth cell to the right side of the
formula (2).

Commonly the first order model (only with the main effects of binary
variables) or the second order model (additionally with the first order
interactions) are used. Thus the group effect v the main effects .j,i
and the interactions ka.i should be estimated. In the present paper we
focus only on the first order model. The estimation procedure is as
follows.
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Let us denote

u = (1, xliJ"ZiJ""'*qu)

(il 8% s vy j=1,2,....ni; n, - the number of individuals in the ith
group; xlij (1=1,2,...,q9) - the value of the 1lth binary variable for
the jth individual from the .th group)

li = ('1’ &1 @ionenny .1q) (1%1,2,...,8)

The estimate of the parameter matrix Ii is given as

B, = C.A

and the estimate of E as

~ 1 n i b
E= - E(Eiv y:: - B.A.B})
n1+ n2+ sie s n‘ $=1 =1 6 ot | c il o |

with the matrices Ci and ‘i defined as

C, = Yy, .ul " A, = u, .u! s
i J&1 : o i i i et 15 %3
When identifying the data with the rule (1) we use the "leaving-one-out"
method. It means that when classifying the Jjth individual we use for
estimation of parameters the whole sample except for this Jth
individual. Such a procedure recommended by Krzanowski (1975) enables to
obtain the unbiased estimates of misclassification probabilities.

3. STEPWISE LOCATION MODEL SELECTION BASED ON THE DISTANCE MEASURE

Krzanowski (1983) has introduced the procedure of selecting discrete
variables to the location model for the two groups of data problem. The
algorithm is based on the distance measure

42 = 2(1-p) (3)

where

k
o= L {(pigeey) Pexpl- (™ - g™y r - wf)
m=

The distance 02 (which is an estimate of AZ) is obtained after replacing
the unknown parameters by their estimates. It can be done using the
procedure described in Section 2 but Krzanowski (1983) recommends to use
the classical estimates (non-smoothed cell means and covariances) for
selection. Then after selecting the model he advices to apply the whole

estimation procedure in the identification process.
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The main idea of selection is that in the discrimination set these
variables should remain which give the greatest distance between the
groups examined. Applying the stepwise procedure we act as follows:
1° we have the whole set of discrete (binary) variables 81 = {1,2,...,q}

in the discrimination set. The actual number of discrete variables
equals r=q.

2° we calculate distances Dj after deleting the Jth discrete variable
(j=1,2,...,r). We use the whole set of P continuous variables for
means and covariances estimation.

32 Let D§ = max Dg. We eliminate the variable no.j° from the model. The
o

remaining discrete variables give the greatest distance between " and
wy possible on the set of r-1 variables obtained in the stepwise
way.

4° 17 r>l we set r: = r-1, 81 = Sl\{Jo} and proceed to 2° otherwise we
stop the elimination process.

The procedure enables only to select binary (discrete) variables
because the distances (3) computed for various subsets of continuous and
discrete variables are uncomparable.

Acting as in the algorithm described we can eliminate all discrete
variables. Krzanowski (1983) do not introduce any stopping criterion. He
chooses the subset of discrete variables heuristically after analysing the
whole selection process.

4. SELECTION PROCEDURE BASED ON AKAIKE CRITERION

The method for selection of continuous as well as discrete variables
and the interaction terms in the linear additive model for means
estimation which is based on the Akaike information criterion was
introduced by Daudin (1986). The original Akaike criterion (Akaike (1973))
is given as

AIC(i) = 1~k 5 (4)

where 1i is the log-likelihood for the ith model considered, ki is the
number of degrees of freedom for the ith model, i.e., the number of
independent parameters in the model.

Among the variants of selection given by Daudin (1986) we use the
following two suitable for the first order model:

a) select binary variables, then continuous ones;
b) first select continuous variables, then binary ones.

The selection of binary variables is performed with the criterion (4)
especially adopted to location model case. It is given as



AIC = n - 1o.|§_‘°’|— 2hgiamn =] (5)
where E.(O) is the estimate of the covariance matrix £ for the general
model with the group factor (obtained by the procedure described in
Section 2), = is the number of continuous variables in the current
discrimination set, n is the number of individuals in the sample, u is
the number of degrees of freedom in the model of one continuous variable.

Let us consider r binary variables. The value of u is simply
obtainable (Ciesielska (1988)). It is so because the location model may be
written in the terminology of the multivariate analysis of variance. In
the case of the first order model we should consider the effects of each
binary variable, the group factor and interactions between the group
factor and binary variables. This gives r + (g-1)(r+1) degrees of freedom.

The optimal subset Sl° t of binary variables is such that

P
= sup AIC(S1) 5

s1
We use the stepwise algorithm to obtain semi-optimal subset. It is as
follows:

AIC(Slopt)

10

Let S1 = {1,2,...,9}. The actual number of binary variables equals
r=q.

2° We calculate the value AIC(j) for all subsets obtained after deleting
the jth binary variable from S1.

3° we eliminate variable number jo for which we have

AIC(jo) = sup AIC(j)
J

AIC(jo) < AIC° .

.
4° If r>1 and if it exists such j for which AIC(j) < AICO we set
r: =r-1, S1 = Sl\{jo) and proceed to 2° otherwise we stop the
selection process.

The value AICo is the upper bound of the value of AIC. If it is
surpassed for all subsets analysed in 3° we assume that the subset found
has sufficiently large value of AIC and is already sufficiently good for
discrimination.

In the case of selection of continuous variables the values of AIC
are not directly comparable and therefore Daudin (1986) has used the
modified criterion DAIC which may be expressed in the form:

DAIC = 2(AIC(0) - AIC(1)) (6)

where AIC(0) is the Akaike criterion for the full model with the group
factor on the set of the s considered continuous variables, AIC(1) is
the Akaike criterion for the model without the group factor and without
all interactions in which this factor is involved.
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The location model is easily written in the terminology of
multivariate analysis of variance, thus its log-likelihood is given as

1= - % (n log | £ I+ n s log(2w) +s) . (1)

Using formulae (4) and (6) the modified criterion DAIC may be written as
DAIC = -2(11- 1°+ ko- kl) ’
where 11, ki are the log-likelihood of the model (i) and the number of

degrees of freedom in 1) __(1=b 1),
Applying (7) DAIC may be explicitly written as

DAIC = n log(|E‘) /15| - sk~ ky) . (8)

It may be easily seen (Ciesielska (1988)) that the difference
t = ko- k1 of degrees of freedom between the model (0) with the group
factor and its interactions with binary variables and model (1) without
these terms equals for the set of s continuous variables

t = s(g-1)(1+r) ’

because the nuaber of degrees of freedom for the model (1) equals sr (r
iz the number of binary variables in the current model).
The optimal subset sopt of continuous variables is such that
DAIC(Sopt) = s;p DAIC(S)
A3 previously we use the stepwise algorithm to obtain the semi-optimal

subset. it is the modification of the algorithm of Daudin (1986) and is as
follows (Ciesielska (1988)):

1% Let B.= (2,2...03s0). The actual number of continuous variables is
s=p.

2° we calculate the value DAIC(j) for all subsets obtained after
deleting the jth continuous variable from S.

39 We eliminate variable no._jo for which we have

DAIC(jo) = sup DAIC(j) and DAIC(jo) < DAIC°
J
If it exists such J for which DAIC(j) < DAICO we set s:=s-1 and
8 = S\(Jo}. If also s>1 we proceed to 2° otherwise we stop the
elimination process.

The value DAICO is upper bound for DAIC. If it is surpassed for all
subsets analysed in 3° we understand that the subset found is already
sufficiently good for discrimination. We used DAICO and AICO equal to 0.
Az indicated in the step 4° of the above algorithm at least one
continuous variable should remain in the discrimination set especially

when we then want to perform the elimination of binary variables,
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5. EXAMPLE OF APPLICATION

The material used in the study was described by Krzanowski (1975) as
the fourth data set. It concerned medical data of 186 subjects with
advanced breast cancer who underwent the ablative surgery. In 99 cases the
treatment was "non-failure", in 87 remaining cases it was "failure". Six
continuous variables and three binary ones were measured.

The results of selection are presented in Table 1 and 2. Table 1
concerns the selection process in the sequence: first binary, then
continuous variables. On the complete set of continuous variables the
binary variables do not possess a sufficient discriminatory power (AIC

Table 1. Selection on the basis of Akaike criterion in the sequence: first

binary, then continuous variables

continuous binary
variables variables

binary

variable AIC

" deleted

1,2,3,4,5,6 1,2,3 3 - 8.3610 3
1,2,3,4,5,6 1,2 2 - 8.2310 3
1,2,3,4;5,6 ) 1 - 8.10lo 3
1,2,3,4,5,6 - - 7.9210 3

continuous

variable DAIC

deleted
1,2,3,4,5,6 - 4 - 4.9310 1
1,2,3,5,8 - 1 - 2.7810 1
2,3,5,6 - - 9.8610 0

lower than - 8000). Thus they are deleted. Then from the complete set of
continuous variables features no.4 and 1 are eliminated. The subset
consisted of continuous variables no.2,3,5,6 remains. After eliminating
succeeding variable the value of DAIC is already positive. The first part
of Table 1 concerns also the problem of eliminating only binary variables.
Because they do not possess discriminatory ability and all are eliminated,
the continuous variables no.1-6 remain in the discrimination set. Table 2
concerns the elimination process in the sequence: first continuous then
binary variables. In this case at least one continuous variable should
remain in the discrimination set at the first stage of selection. This is
the variable no.2. On this feature binary variables have sufficient

discriminatory ability and they all remain in discrimination set, thus in
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Table 2. Selection on the basis of Akaike criterion in the sequence: first
continuous, then binary variables

continuous binary
variables variables
continuous
variable DAIC
deleted
1,2,3,4,5,6 1,2,3 4 - 2.5110 2
1,2,3,5,6 1,2,3 1 - 1.69Io 2
2,3,5,6 1,2,3 3 - 9.8110 1
2,5,6 1,2,3 6 - 4.4910 1
2,5 1,2,3 5 - 1.0010 1
2 1,2,3 - 2.7310 0
binary
variable AIC
deleted
2 1,2,3 4.1310 1

fact the elimination of binary variables is not performed. The first part
of Table 2 concerns also the case when we eliminate only continuous
variables, saving all binary in the discrimination set. We have checked
the discriminatory ability for the subset of continuous variables no.
2,3,5,6 and all binary variables with the value of DAIC over 2.5 times
greater than for the complete set. We have also examined the subset of
continuous variables no.2 and 5 and all binary variables for which the
DAIC value increases almost 4.5 times in comparison with the set of three
continuous variables.

The identification results are given in Table 3. It consists of four
parts. The first part concerns the results of identification using the
linear discriminant function and the location model of the first order on
the complete set of continuous and binary variables. The location model is
superior in comparison with the linear discrimination. The second part
of the table concerns identification on subsets chosen in various variants
by Akaike criterion. The best results of 58 and 59 misclassifications
(better than for the complete set) are obtained for subset of continuous
variables no. 2,3,5,6 and binary variables no.1-3 and for continuous
variables no.2,5 and all binary variables, too. Besides it should be
stressed that the linear discrimination on the set of only continuous
variables has given 68 misclassifications (when for the complete set -
71). The subset of variables no.2,3,5,6 chosen in Table 1 is even better
(66 misclassifications) and at the level of the full location model of the
first order (64 misclassification). In the third part of Table 3 the
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Table 3. Identification results

Method Continuous Binary Misclassifications
variables variables L ", together

linear

discri-ignnt 1,2,3,4,5,6 1,2,3 41 30 71
function

location

model of the 1,2,3,4,5,6 1,2,3 34 30 64
first order

lecata s 2,3,5,6 1,2,3 32 26 58
model of the 2,5 1,2,3 27 32 59
first order 2 1,2,3 25 51 76
location

model reduced 1,2,3,4,5,6 - 34 34 68
to the linear

discriminant 2:3,5,6 - 33 33 66
function

location
model of the 1,2,3,4,5,6 139 40 27 67
first order

ideal point

discrimiggnt 2 1,3 30 27 57

analysis

* after Krzanowski (1975)
** after Takane et al. (1987)

results on the subset obtained by Krzanowski (1983) are reported but for
the first order location model (he only gives the outcomes for the second
order model which is not studied in the present paper; compare also
Krzanowski (1975)). They are better than the linear discrimination but
worse than the identification on the subsets chosen by Akaike criterion.
For comparison the fourth part of the table concerns the results of the so
called ideal point discriminant analysis introduced by Takane et al.
(1987). This is the kind of extension of logistic discrimination with the
choice of variables by Akaike criterion defined especially for that model.
Using it the continuous variable no.2 and binary variables no.l1 and 3 were
saved in the discrimination set. The number of misclassifications equaled
57 and was at the level of the location model chosen also by Akaike
criterion. So it is seen that it is not the superiority of ideal point
discriminant analysis and that the appropriate model choice (indicated by
Takane et al. (1987) as the considerable advantage of their method) is

also possible with the location model technique.
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6. CONCLUSIONS

The results obtained indicate that the model choice should be
performed before identification. It concerns the linear discrimination as
well as the location model, because the noninformative "noise" can
contaminate the results of classification. The best location models chosen
have given the identification results at the level of the newly developed
ideal point discriminant analysis for the subset also selected by Akaike
criterion.

The authors are greatly indebted to Dr. W.J. Krzanowski from the
University of Reading, Great Britain for the permission to use his data
set in the study.
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WPLYW WYBORU ZMIENNYCH NA REZULTATY IDENTYFIKACJI
UZYSKIWANE PRZY UZYCIU MODELU LOKACYJNEGO

Streszczenie

W pracy przedyskutowano wpiyw wyboru zmiennych w modelu lokacyjnym na
wyniki identyfikacji. Wybér zmiennych przeprowadzono przy uzyciu kryterium
informacyjnego Akaike za pomocyg zmodyfikowanej metody Daudina (1986).
Zostata ona pordéwnana z procedurg Krzanowskiego (1983). Na przykiadzie
danych medycznych pokazano, 2ze wyniki klasyfikacji dla wybranego modelu
mogg by¢ lepsze niz dla kompletnego zbioru zmiennych objasniajacych.
Dlatego tez wybér zmiennych powinien byé przeprowadzony przed
dyskryminacj3a.



